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Abstract. Pauli exclusion between the carriers of N excitons induces novel many-body effects, quite dif-
ferent from the ones generated by Coulomb interaction. Using our commutation technique for interacting
close-to-boson particles, we here calculate the Hamiltonian expectation value in the N-ground-state-exciton
state. Coulomb interaction enters this quantity at first order only by construction; nevertheless, due to
Pauli exclusion, subtle many-body effects take place, which give rise to terms in (Na2/V)™ with n > 2.
An ezxact procedure to get these density dependent terms is given.

PACS. 71.35.-y Excitons and related phenomena

It is known that excitons being made of two fermions are
not exact bosons. Their underlying fermionic character
is however a major difficulty which has been overcomed
very approximately up to quite recently. An approach [1,2]
which has looked reasonable for years is to assume that ex-
citons are exact bosons provided that their close-to-boson
character is included in an appropriate exciton-exciton in-
teraction which is basically a Coulomb interaction dressed
by exchange processes.

Very recently, we have developed a formalism which
allows to include the close-to-boson character of the exci-
tons exactly, through an extremely simple and physically
quite transparent algebra [3]. Using this “commutation
technique”, we have already shown [4], by calculating the
correlations of two excitons, that Pauli exclusion between
the two electrons and the two holes of these two excitons,
enters their Coulomb terms in such a subtle way that a
naive bosonic Hamiltonian for excitons [1,2,5] cannot pro-
duce these terms correctly beyond first order in Coulomb
interaction, reducing considerably the impact of such an
effective Hamiltonian.

A way to physically understand the problem is to re-
alize that excitons feel each other through both Coulomb
interaction and Pauli exclusion between their components.
Consequently, besides the usual many-body effects result-
ing from Coulomb interaction, the excitons do have very
unusual ones coming from Pauli exclusion. These two
kinds of many-body effects, being utterly independent, en-
ter the various quantities of physical interest quite differ-
ently. So that there is no reason, for the exchange processes
resulting from Pauli exclusion, to dress the Coulomb in-
teraction in an unique way. In other words, there is no
reason to describe the physics of interacting excitons by
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one dressed exciton-exciton interaction only, as assumed
in the effective bosonic Hamiltonian.

In the present work, we calculate the semiconduc-
tor Hamiltonian expectation value in the N-ground-state-
exciton state. In the absence of Coulomb interaction and
Pauli exclusion, this Hamiltonian expectation value (H)n
should be equal to NEy with Ey being the ground state
energy of one exciton. Due to Coulomb interaction, which
by construction enters this quantity at first order only, we
should find one additional term resulting from the average
Coulomb energy in this N-exciton state, and which should
be Na2/V smaller than the main energy N Ejy, a, being
the exciton Bohr radius and V the sample volume. The
exact calculation shows that the Hamiltonian expectation
value also contains terms in (Na2/V)" with n > 2, which
originate from many-body effects between the N excitons
induced by Pauli exclusion. Using our commutation tech-
nique, we show how we can derive these many-body effects
in a systematic way, at any order in n = Na3 /V.

Let us stress that the N-ground-state-exciton state
(B(T))N|v> considered here is not the ground state of N
electron-hole pairs. If this were the case, (H)y would
not be the Hamiltonian expectation value in this state,
but barely the N-electron-hole-pair ground state energy.
(Bg)N |v) is nevertheless a physically relevant state as it is
the N-pair ground state at lowest order in the interactions
(Coulomb and Pauli), so that (H)y is part of the N-pair
ground state energy. Moreover, as excitons — and not more
complex structures like biexcitons — are coupled to light,
(Bg)N |v) is the relevant “initial” state after the absorption
of N photons tuned to the exciton ground state energy. In
the time evolution of this initial state — from which follow
the lifetime and scattering rates — this expectation value
(H)n also plays a crucial role.
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For the sake of simplicity, we here forget about the
spin degrees of freedom of the excitons. Their inclusion
is formally straightforward following reference [6]. They
however lead to quite cumbersome equations which tend
to hide the physics we want to point out here.

The paper is organized as follows. In Section 1, we re-
call the basic relations of our commutation technique and
use them to calculate the expectation value of the Hamil-
tonian in the N-ground-state-exciton state, (H)y. In Sec-
tion 2, we derive the recursion relation satisfied by the
matrix elements which appear in the expression of (H)y,
and we iterate this relation to obtain the density leading
terms of these matrix elements. In Section 3, we calculate
the three first terms of the n = Na2/V expansion of (H)x
explicitly. In the conclusion, we discuss the obtained re-
sult and relate it to the new criterion for bosonic behavior
of excitons we recently proposed [7].

1 Expectation value of the Hamiltonian using
our commutation technique

The semiconductor Hamiltonian expectation value in the
N-ground-state-exciton state reads

(v](Bo)N H(B) |v)
H)y = ,
O = B B )

(1)

where |v) is the electron-hole pair vacuum state and Bg
the (exact) creation operator of one ground state exciton,
i.e. exciton with a center of mass momentum Qg = 0 and
a relative motion in its ground state ¢,,. The algebraic
calculation of (H)y is quite easy through our commuta-
tion technique.

Two important relations of this commutation tech-
nique are [3]

(2)
(3)

|1, B]| = BBl + V||

{V;T?BJT} = Z S@lfijinBL ’

mn

where F; is the 7 exciton energy and BZT the (exact) cre-
ation operator of an i exciton, ¢ standing for (v;, Q;).
The operator V;T comes from the Coulomb interactions
between the i exciton and the rest of the system, while
the parameter ggg;ij corresponds to the direct Coulomb
scattering of the (7, j) excitons into the (m,n) states (see
Fig. 1a). In r space, £, reads [3]

: : 1
dir _ dir 2
mnij — gijmn D) dre, drp, dre, drp,

X ¢, (€1, h1) ey, (e2, ha)
X [‘/6162 + ‘/}11}12 - ‘/eth - ‘/62}11]
X ¢i(er, h1)pj(ea, ha) + (i = j) , (4)

where ¢;(e, h) is the total wave function of the i exci-
ton, i.e. the product of the relative motion wave func-
tion ¢,, (re — rp), and the center of mass wave function

eiQi'(ae[‘e+a}L[‘}L)/\/]_}, Wlth Qe = 1 —Qap = me/(me + mh)
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(2)

(b)

Fig. 1. (a) Direct Coulomb interaction Ef,iﬁw-j between two ex-
citons which are scattered from the (7, j) states to the (m,n)
states, the “in” and “out” excitons being made with the same
electron-hole pairs. (b) Coupling between (%, j) and (m,n) ex-
citons induced by the fact that two electrons and two holes can
be coupled in two different ways to form two excitons.

Using equations (2,3), it is straightforward to prove by
induction that

N(N 1)
2
X Z &m0 BLBL(BHN 2 + N(BHN 'V

H.(B)Y] = NEW(B)" +

()

so that, as Hlv) = 0 = VOT|”U>, we get with H acting on
the left

(H)y = NE, + w
g 1B BB (B o)
2 S B (B ) ©

As expected, Coulomb interaction enters (H)y at first

order only, as (H)x is linear in the Coulomb scatterings
dir
00mn -

If the excitons were exact bosons, the ratios in the sum
would be 1 for m = n = 0, and 0 otherwise, so that we
would get (H)y = NEg + N(N — 1)£5,/2. We can then
note that for n =i = j, equation (4) reduces to

miii ~ 3

2
X <sz (rel —TIpy )5014 (rel - rhl) |90Vi (rez - rh2)|

62 62 62 62
YA MR S S
|r61 — Te, | |rhl _rh2| |re1 _rh2| |r62 —Th,y |

(7)

as can be seen by exchanging r., and rp,. Consequently,
strangely enough, if we forgot about the close-to-boson
character of the excitons, (H)y would be equal to NEy
as if the excitons were not interacting at all!

s - ; /drel drhl dreg drh2 ei(QiiQ"L).(aerel+ahrh1)
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Of course, excitons are not exact bosons. Let us now
show how we can calculate the matrix elements appear-
ing in the sum of equation (6) for exact excitons. Here
again, two important relations of our commutation tech-
nique make their calculation quite easy, namely [3]

[Bi, Bj.] =0i — Dy 8)

{Dmi; B;r} =2 Z )\mnijBJl . (9)
n

D;; is the deviation-from-boson operator, while the pa-
rameter A\p,ni; describes the fact that there are two ways
to couple two electrons (e1,ez2) and two holes (hy, ha) to
make two excitons, either (e1, h1)(ea, ha) or (e1, ha)(ea, h1)
(see Fig. 1b). In r space Amni; reads [3]

1

)\mnij = )\:]mn = 5 /drel drhl dr€2 dI‘h2

X ¢:7L(617 hl)(ﬁ;(e% h2)¢z (61; h2)¢j (627 hl)

+ (i ). (10)

Equations (8-10) are the key equations which allow an
easy calculation of the matrix elements appearing in
(H)n.

2 Calculation of the matrix elements
appearing in (H)y

From equations (8, 9), it is straightforward to prove by
induction that

[Bm, (ng} = Nomo(BHN-1 = N(N —1)

X Z )\mpooB;(Bg)N_2 *N(B(T))N_leo-
P
(11)

Before calculating the matrix elements of (H)y, with
two excitons possibly outside the ground state, let us first
consider the simpler ones, with only one exciton outside
the ground state, namely

AN = (0| (Bo)Y ' Bu(BHN [ 0)/NL. (12)

As D;; | v) = 0, we get from equation (11) that AN
verifies the recursion relation

AN = 80 AT = (N = 1) D7 Aupeo (AN D)
p
(13)

which is shown in Figure 2a. If we iterate this equation,

and note that ABN) is nothing but the quantity Fy defined
in reference [7],

AN = Fy = (v | (Bo)N(BHY | v)/NL,  (14)

— (N-1) N-2)(N-3)Fy,
®) e DX
F e

Fig. 2. Overlap A\ as defined in equation (12), between two
N-exciton states, when one of the N excitons is in a state m,
instead of the ground state 0. (a) Diagrammatic representation

of the integral equation (13) which links AP to (AéNfl)) .
The cross represents the A,po0 exchange process. (b) Density
expansion of ALY as given in equation (15). The quantity Fi,
defined in equation (14), differs from 1 because the excitons
are not exact bosons.

we find that A%V ) expands as

AN = Fn 16,0 — (N = 1)Fx—2Amo00

+ (N =1)(N = 2)Fn_3 Z Amp00A00p0
P
—(N—=1)(N—=2)(N—3)Fn_4 Z Amp00A00pg Aq000 +*  +

pq as)

(see Fig. 2b). By expliciting the A’s, it is possible to show
that, for m = 0, equation (15) is nothing but the recursion

relation between the Fy’s given in reference [7], namely

FN:FNflf(Nf].)O—QFN72

+(N—-1)(N—-2)o3Fy_g—---, 16)
with
Op = Z D, (k)[>"
k
= % (647Tai/]})n71 7 (17)

in 3D, @,,(k), given in the appendix, being the Fourier
transform of ¢, (r).
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Let us now turn to the matrix elements with two ex-
citons possibly outside the ground state, namely

B = (| (Bo)N ?BnBa(BYN [v)/N. (18)
From equation (9), we get
[Donir (B)Y] = 2N Y Ao BYBDY . (19)

q

easy to prove by induction. Using equations (11, 18, 19),
we find that By(nl\,[l) verifies the recursion relation,

BXY) = Fn—2(6m06n0 — Amnoo) — (N — 2) Z (AéN_Q))

q

X { <5m0)\nq00 - Z )\mpOO)\nqp0> + (m A n)}
p
+ (N =2)(N -3) Z (B](Dév_Q)) Amp00Angoo ; (20)

Prq

shown in Figure 3a. We can then use equation (15) for
AEIN) and iterate equation (20). The three first terms of
the expansion of B are obtained by replacing AgN_Q)
by the two first terms of equation (15) and B,(,flv_2) by the
first term of equation (20). This leads to

BI(N) = FN—2(6m057L0 - )\mnOO) - (N - 2)F‘N—3

X { <5m0)\n000 _Z )\mpOO)\'rLOpO) +(m - n) }

+(N=2)(N—3)Fy_4

X{ Kdmoz Anp00A00p0 —Z Amp00 Angpo )\ooq0> +Hm— n)}
p

pq

+Am000An000 = Y Ampo0 Ang0o A0pg } +- (21
rq

The meaning of all these terms is easier to grasp from
their diagrammatic representation shown in Figure 3b. We
see that the first term of BT(,L]\Q corresponds to all Pauli
couplings between two ground state excitons (0,0) and the
two (m,n) excitons; the second term of BT(,LAQ corresponds
to all Pauli couplings between three ground state excitons
(0,0,0) and the three (m,n,0) excitons; the third term
couples the (0,0, 0,0) excitons to the (m,n,0,0) excitons,
and soon ...

3 Density expansion of (H)y

Let us now return to the expectation value of the Hamil-
tonian (H)y. Using equations (6, 14, 18, 21), and the fact
that £33, =0 (see Eq. (7)), we find that (H)y reads

(H)n = N(Eo + 4) (22)
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Fig. 3. Overlap BS,IL\Q, as defined in equation (18), between
two N-exciton states when two of the N excitons are in the
states (m,n) instead of the ground state 0. (a) Diagrammatic
representation of the integral equation (20) which links B
to (.A,E—,N_Q)> and (B;]J_Q)) . The cross of the first line cor-

responds to Amnoo while the two crosses of the last line corre-
spond t0 Angoo and Ampoo. (b) Density expansion of Bm]\g as

given in equation (21). Fy is defined in equation (14).

where the three first terms of A are given by

A:_(N_1)FN—2ﬁ+(N_1)(N_2)FN—352
FN 2 N
— (N = 1)(N —2)(N —3)
Fn_4 Sy Sy
i (S3+ 5 T )t (23)

the expressions of the various sums S, in terms of £4"’s
and \’s being given below.
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By looking at Figure 4a, or by using equations (4, 10),
it is easy to see that the first sum S; reads in r space

E dir
Sl = gO(l)mn )‘mnOO
mn

— [ dre dmn, v, don, 5 (en, ) ez )

X (Veyeo + Vinhy = Verhy — Veany )do(e1, ha)go(ez, h(l) ,)
24

. . . ight . .
which is nothing but &&= €558 defined in our previous

works dealing with the matrix elements of H in the two-
exciton subspace [3]. This term is also the usual exchange
Coulomb term of the effective bosonic Hamiltonian for
excitons [2,8].

The second sum of equation (23) involves three exci-
tons as can be seen from Figure 4b. It reads

a
S = E £00rmn Amp00 An0po

mnp
= /dre1 drp, dre, drp, dre, drp,

X ¢p(er, hi)dg ez, ha)dp(es, ha)
X [‘/5162 + Vh1h2 - ‘/61}12 - ‘/62}11]

x go(e1, ha)do(ez, ha)go(es, hi) - (25)

The three sums of the third term of equation (23) in-
volves four excitons. The first sum S3, shown in Figure 4c,
reads

Ss = Z £ Amp00 Angpo A00g0
= /dre1 drp, dre, drp, dre, drp, dr., drpy,
x gpler, hi)gg(e2, ha)dg(es, ha)dg (e, ha)
X [‘/:3162 + Vh1h2 - ‘felhz - ‘/62}741]
X ¢po(e1, ha)do(ez, h3)po(es, ha)po(es, h1).  (26)
The sum S5 defined as Sh =

Zmnpq §g(i)§nnAmp00)\nq00)\oopq and shown in Figure 4d,
reads as equation (26) except for the four ¢¢’s which are
replaced by

do(e1, hz)po(ez, ha)do(es, ha)do(ea, h1) -

The last sum SY defined as SY =
Zmn §gé%n>\mooo>\nooo, and shown in Figure 4e, reads
as equation (26) except for the four ¢¢’s which are now
replaced by

do(e1, hs)po(ez, ha)do(es, hi)goles, ha) .

This sum is in fact equal to zero as easily seen by exchang-
ing (re, < T'p,), and (re, < rp,), in the integral.

It is physically important to note that all these sums
contain the same Coulomb coupling between only two ez-
citons made with (e, h1) and (ez, he). Couplings between
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(@)

(b)

©

(d)

Fig. 4. (a) The sum S; defined in equation (24) with one
exchange process Amnoo which transforms the (0,0) excitons
into (m,n) excitons, followed by one direct Coulomb interac-
tion €3 which scatters these (m,n) excitons back into the
ground state (0,0). (b) The sum Sa, defined in equation (25),
with two exchanges and one direct Coulomb scattering. (c) (d)
(e) The sums Sz, S5 and S%, defined in equation (26) and be-
low, with three exchanges and one direct Coulomb scattering.

more than two excitons appearing in Sj,>2, result from
many-body effects induced by the close-to-boson charac-
ter of the excitons.

The sums Sy, Sz, S3, S5 are calculated in the Appendix
(see Eqgs. (A.9-A.12)). Although not obvious at first, S,
Sy and Ss 4+ S%/2 are in fact real even if @,, is not, as
necessary to have a real energy change A resulting from
these Coulomb and Pauli couplings.

The Fy_p/Fn ratios also generate density dependent
terms in A. These ratios differ from 1 due to the close-
to-boson character of the excitons. Their 7 expansion can
be obtained from the recursion relation (16), which also
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reads

Fy
Fy_q

Fy_»
Fy_q

21—(N—1)0'2

Fy_3

+(N-1)(N—-2)o3 + - (27)

As o, isin (a2 /V)"! (see Eq. (17)), we can iterate equa-
tion (27) to obtain the ratio Fy/Fn_1, for N > 1, as an
expansion in powers of the parameter n = Na2 /). We get

Fy
Fn_q

—17NO’2+N(0'370'2)+O( ) (28)

As for large N, Fy_,/Fn ~ (Fy—1/Fn)P, the ratios ap-
pearing in equation (23) are given by

Fn_ ,
g 2 =14 2Noy 4 N2(502 — 203) + O(n?)

N
Fn_3 9

=14+ 3Nos+ O(n*)

Fy
Fy_

N1 — 14 0(). (29)
Fy

By inserting equation (29) into equation (23), we obtain
the following expansion of the energy change A in powers
of n:

A= —N%-FNQ[SQ—O'QSl]
3 Szla S 2 4
+ N 753*7+3025277(5027203) JrO(n )

(30)

Using equations (17, A.9-A.12) and putting everything
together, we finally find that the Hamiltonian expectation
value in the N-ground-state-exciton state expands in pow-
ers of n = Na2/V as

137 7372 , 351778
H)y =NEy (1- — 2
(H)n 0 < 3 Tt 5 " 210

=NEy(1-14x10"n+3.6 x 10" °
—-5.2x10°n* + O(n")) .

i+ 00" )

(31)

Let us again stress that terms in n™ with n > 2 come
from many-body effects induced by Pauli exclusion, since
Coulomb interaction enters (H)x at first order only.

4 Conclusion

We have calculated the expectation value (H)y of the
exact semiconductor Hamiltonian in the N-ground-state-
exciton state (B})N|v), using the commutation technique
we recently introduced. Due to novel many-body effects
induced by the close-to-boson character of the excitons,
(H)N appears as an expansion in powers of the density
through = Na2/V, Coulomb interaction entering this
quantity at first order only by construction. Higher order
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terms in 1", with n > 2, result from both, sophisticated
exchange processes in which the Coulomb interaction ap-
pears at first order only (see Fig. 4), and purely Pauli
many-body effects which make (v|(Bo)N (B5)N|v) to dif-
fer from its exact boson value N!

From the result given in equation (31), we see that
the prefactors of the expansion of (H)x are rather large
so that 7 = Na32/V has to be much smaller than 1 for
(H)ny to be equal to the energy of N non-interacting
boson-excitons N Ey. In a previous work [7], we have al-
ready shown that, while the Mott criterion corresponds to
n = Na3/V ~ 1 for the electron-hole pairs to be bound
in excitons, i.e. for the excitons to exist in spite of screen-
ing, the criterion for the excitons to behave as bosons is
more like 100Na2/V ~ 1. As the n expansion of (H)y
is physically linked to many-body effects induced by the
close-to-boson character of the excitons, it is after all rea-
sonable to find similar conditions for excitons to behave
as bosons and for the Hamiltonian expectation value to
be equal to the one of N non-interacting boson-excitons.

We wish to thank Dimitri Roditchev for his help.

Appendix

We start from the expressions of Sy, S, S3 and S} in r
space given in equations (24-26), and we rewrite them by
using the Fourier transforms of the exciton wave function
and Coulomb potential. For Qg = 0, we have

1
h =3 > @y, (ke
k

e? i
R ig-r
" zq: Vge' ",

with Vg = 4me?/Vq? in 3D.

If we insert equations (A.1, A.2) into S; given in equa-
tion (24), and we perform the integrals over the r’s, we
get

S1=2 Vicwl| B (k)] [|80, (K

k.k’

ik-(re—rp)
)

(A1)

(A.2)

— &5, (k) @y, (K)] .

(A.3)

By using the Schrodinger equation for the exciton relative
motion,

(%2 /21 — €,,)®

ka WP (K)=0, (Ad4)

with €,, = Ey = —e /Qam, we can check that S is real.

If we now insert equations (A.1, A.2) into Sy given in
equation (25), and perform the integrals over the r’s, we
get

So =) View 218, (K)[* |8y, (K

—[Py, (k )I4 *(k) o (k')
— (@208, () (82, (K)P%, (K))] . (A5)
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The second term of equation (A.5) is real due
to equation (A.4), while the last term is real by
(k < k').

For the third order sums, we obtain in the same way

S3= ) Vierie [0, ()1 [ 2000, () |0, ()
k,k’

=@y, ()2 7, (k) o, (K')

—|Puy (K @, (k) 27, (K') ] (A.6)
Sy =2 Vi o, (K)[* [ 1@y, (K)[*
k.k’
—|Bu () &, (k) @,y (K') ] (A7)

The energy shift A depending on (S3 + S5/2) as S§ =
0, we can check that this quantity is real due again to
equation (A.4).

By inserting the 3D value of &, (k), namely

8\/7_1' a3 1/2
e (3)

(1+ a2k?)2
into equations (A.3, A.5-A.7), and by calculating the in-
tegrals over k and k’, we obtain

267 (a3
22 (%) g
3 (V) 0>

b, (k) = (A.8)

Sy (A.9)

wi
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S2

293372 [a2\”
22 Ey,
20 \V

1079573 (a3 \”
2 (22 Ry,
2 %

296017 [a2\®
=2 () gy,
28 \V

(A.10)

Ss3 (A.11)

S (A.12)

th Eg = —€?/2a,.
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